之前总结了基础数据类型与其底层数据结构的实现,今天来讲下高级的数据类型与其 Redis 中自带的一些解决方案。
在我们平时开发过程中,会有一些 bool 型数据需要存取,比如用户一年的签到记录,签了是 1,没签是 0,要记录 365 天。如果使用普通的 key/value,每个用户要记录 365 个,当用户上亿的时候,需要的存储空间是惊人的。
为了解决这个问题,Redis 提供了位图数据结构,这样每天的签到记录只占据一个位,365 天就是 365 个位,46 个字节 (一个稍长一点的字符串) 就可以完全容纳下,这就大大节约了存储空间。
位图不是特殊的数据结构,它的内容其实就是普通的字符串,也就是 byte 数组。我们可以使用普通的 get/set 直接获取和设置整个位图的内容,也可以使用位图操作 getbit/setbit 等将 byte 数组看成「位数组」来处理。
提示
在面试中有 Redis 位图使用经验的同学很少,如果你对 Redis 的位图有所了解,它将会是你的面试加分项。
Redis 的位数组是自动扩展,如果设置了某个偏移位置超出了现有的内容范围,就会自动将位数组进行零扩充。
sh127.0.0.1:6379> setbit s 1 1
(integer) 0
127.0.0.1:6379> setbit s 2 1
(integer) 0
127.0.0.1:6379> setbit s 4 1
(integer) 0
127.0.0.1:6379> setbit s 9 1
(integer) 0
127.0.0.1:6379> setbit s 10 1
(integer) 0
127.0.0.1:6379> setbit s 13 1
(integer) 0
127.0.0.1:6379> setbit s 15 1
(integer) 0
127.0.0.1:6379> get s
"he"
上面这个例子可以理解为「零存整取」,以字符串的二进制形式存储,最终用 get 获取字符串。同样我们还也可以「零存零取」,「整存零取」。「零存」就是使用 setbit 对位值进行逐个设置,「整存」就是使用字符串一次性填充所有位数组,覆盖掉旧值。
Redis 提供了位图统计指令 bitcount 和位图查找指令 bitpos,bitcount 用来统计指定位置范围内 1 的个数,bitpos 用来查找指定范围内出现的第一个 0 或 1。
比如我们可以通过 bitcount 统计用户一共签到了多少天,通过 bitpos 指令查找用户从哪一天开始第一次签到。如果指定了范围参数[start, end]
,就可以统计在某个时间范围内用户签到了多少天,用户自某天以后的哪天开始签到。
遗憾的是, start 和 end 参数是字节索引,也就是说指定的位范围必须是 8 的倍数,而不能任意指定。这很奇怪,我表示不是很能理解 Antirez 为什么要这样设计。因为这个设计,我们无法直接计算某个月内用户签到了多少天,而必须要将这个月所覆盖的字节内容全部取出来 (getrange 可以取出字符串的子串) 然后在内存里进行统计,这个非常繁琐。
接下来我们简单试用一下 bitcount 指令和 bitpos 指令
sh127.0.0.1:6379> set w hello
OK
127.0.0.1:6379> bitcount w
(integer) 21
127.0.0.1:6379> bitcount w 0 0 # 第一个字符中 1 的位数
(integer) 3
127.0.0.1:6379> bitcount w 0 1 # 前两个字符中 1 的位数
(integer) 7
127.0.0.1:6379> bitpos w 0 # 第一个 0 位
(integer) 0
127.0.0.1:6379> bitpos w 1 # 第一个 1 位
(integer) 1
127.0.0.1:6379> bitpos w 1 1 1 # 从第二个字符算起,第一个 1 位
(integer) 9
127.0.0.1:6379> bitpos w 1 2 2 # 从第三个字符算起,第一个 1 位
(integer) 17
前文我们设置 (setbit) 和获取 (getbit) 指定位的值都是单个位的,如果要一次操作多个位,就必须使用管道来处理。 不过 Redis 的 3.2 版本以后新增了一个功能强大的指令,有了这条指令,不用管道也可以一次进行多个位的操作。 bitfield
有三个子指令,分别是 get/set/incrby
,它们都可以对指定位片段进行读写,但是最多只能处理 64 个连续的位,如果超过 64 位,就得使用多个子指令,bitfield 可以一次执行多个子指令。
接下来我们对照着上面的图看个简单的例子:
sh127.0.0.1:6379> set w hello
OK
127.0.0.1:6379> bitfield w get u4 0 # 从第一个位开始取 4 个位,结果是无符号数 (u)
(integer) 6
127.0.0.1:6379> bitfield w get u3 2 # 从第三个位开始取 3 个位,结果是无符号数 (u)
(integer) 5
127.0.0.1:6379> bitfield w get i4 0 # 从第一个位开始取 4 个位,结果是有符号数 (i)
1) (integer) 6
127.0.0.1:6379> bitfield w get i3 2 # 从第三个位开始取 3 个位,结果是有符号数 (i)
1) (integer) -3
所谓有符号数是指获取的位数组中第一个位是符号位,剩下的才是值。如果第一位是1,那就是负数。无符号数表示非负数,没有符号位,获取的位数组全部都是值。有符号数最多可以获取 64 位,无符号数只能获取 63 位 (因为 Redis 协议中的 integer 是有符号数,最大 64 位,不能传递 64 位无符号值)。如果超出位数限制,Redis 就会告诉你参数错误。
接下来我们一次执行多个子指令:
sh127.0.0.1:6379> bitfield w get u4 0 get u3 2 get i4 0 get i3 2
1) (integer) 6
2) (integer) 5
3) (integer) 6
4) (integer) -3
然后我们使用 set 子指令将第二个字符 e 改成 a,a 的 ASCII 码是 97。
sh127.0.0.1:6379> bitfield w set u8 8 97 # 从第 8 个位开始,将接下来的 8 个位用无符号数 97 替换
1) (integer) 101
127.0.0.1:6379> get w
"hallo
再看第三个子指令 incrby,它用来对指定范围的位进行自增操作。既然提到自增,就有可能出现溢出。如果增加了正数,会出现上溢,如果增加的是负数,就会出现下溢出。Redis 默认的处理是折返。如果出现了溢出,就将溢出的符号位丢掉。如果是 8 位无符号数 255,加 1 后就会溢出,会全部变零。如果是 8 位有符号数 127,加 1 后就会溢出变成 -128。
接下来我们实践一下这个子指令 incrby :
sh127.0.0.1:6379> set w hello
OK
127.0.0.1:6379> bitfield w incrby u4 2 1 # 从第三个位开始,对接下来的 4 位无符号数 +1
1) (integer) 11
127.0.0.1:6379> bitfield w incrby u4 2 1
1) (integer) 12
127.0.0.1:6379> bitfield w incrby u4 2 1
1) (integer) 13
127.0.0.1:6379> bitfield w incrby u4 2 1
1) (integer) 14
127.0.0.1:6379> bitfield w incrby u4 2 1
1) (integer) 15
127.0.0.1:6379> bitfield w incrby u4 2 1 # 溢出折返了
1) (integer) 0
bitfield 指令提供了溢出策略子指令 overflow,用户可以选择溢出行为,默认是折返(wrap),还可以选择失败 (fail) 报错不执行,以及饱和截断 (sat),超过了范围就停留在最大最小值。overflow 指令只影响接下来的第一条指令,这条指令执行完后溢出策略会变成默认值折返 (wrap)。
在开始之前,我们先思考一个常见的业务问题:如果你负责开发维护一个大型的网站,有一天老板找产品经理要网站每个网页每天的 UV 数据,然后让你来开发这个统计模块,你会如何实现?
如果统计 PV 那非常好办,给每个网页一个独立的 Redis 计数器就可以了,这个计数器的 key 后缀加上当天的日期。这样来一个请求,incrby 一次,最终就可以统计出所有的 PV 数据。
但是 UV 不一样,它要去重,同一个用户一天之内的多次访问请求只能计数一次。这就要求每一个网页请求都需要带上用户的 ID,无论是登陆用户还是未登陆用户都需要一个唯一ID 来标识。
你也许已经想到了一个简单的方案,那就是为每一个页面一个独立的 set 集合来存储所有当天访问过此页面的用户 ID。当一个请求过来时,我们使用 sadd 将用户 ID 塞进去就可以了。通过 scard 可以取出这个集合的大小,这个数字就是这个页面的 UV 数据。没错,这是一个非常简单的方案。
但是,如果你的页面访问量非常大,比如一个爆款页面几千万的 UV,你需要一个很大的 set 集合来统计,这就非常浪费空间。如果这样的页面很多,那所需要的存储空间是惊人的。为这样一个去重功能就耗费这样多的存储空间,值得么?其实老板需要的数据又不需要太精确,105w 和 106w 这两个数字对于老板们来说并没有多大区别,So,有没有更好的解决方案呢?
这就是本节要引入的一个解决方案,Redis 提供了 HyperLogLog 数据结构就是用来解决这种统计问题的。HyperLogLog 提供不精确的去重计数方案,虽然不精确但是也不是非常不精确,标准误差是 0.81%,这样的精确度已经可以满足上面的 UV 统计需求了。
HyperLogLog 数据结构是 Redis 的高级数据结构,用于进行基数统计的算法,可以快速估算一个集合中不重复的元素数量。非常适合用于大数据量的唯一性统计。
HyperLogLog 提供了两个指令 pfadd 和 pfcount,根据字面意义很好理解,一个是增加计数,一个是获取计数。pfadd 用法和 set 集合的 sadd 是一样的,来一个用户 ID,就将用户 ID 塞进去就是。pfcount 和 scard 用法是一样的,直接获取计数值。
sh127.0.0.1:6379> pfadd codehole user1
(integer) 1
127.0.0.1:6379> pfcount codehole
(integer) 1
127.0.0.1:6379> pfadd codehole user2
(integer) 1
127.0.0.1:6379> pfcount codehole
(integer) 2
127.0.0.1:6379> pfadd codehole user3
(integer) 1
127.0.0.1:6379> pfcount codehole
(integer) 3
127.0.0.1:6379> pfadd codehole user4
(integer) 1
127.0.0.1:6379> pfcount codehole
(integer) 4
127.0.0.1:6379> pfadd codehole user5
(integer) 1
127.0.0.1:6379> pfcount codehole
(integer) 5
127.0.0.1:6379> pfadd codehole user6
(integer) 1
127.0.0.1:6379> pfcount codehole
(integer) 6
127.0.0.1:6379> pfadd codehole user7 user8 user9 user10
(integer) 1
127.0.0.1:6379> pfcount codehole
(integer) 10
概率信息
简单试了一下,发现还蛮精确的,一个没多也一个没少。接下来我们使用脚本,往里面灌更多的数据,看看它是否还可以继续精确下去,如果不能精确,差距有多大。
当我们加入第 100 个元素时,结果开始出现了不一致。接下来我们将数据增加到 10w 个发现差了 277 个,按百分比是 0.277%,对于上面的 UV 统计需求来说,误差率也不算高。
然后我们把数据重复加入一边,查看输出,可以发现,pfcount 的结果没有任何改变,还是 99723,说明它确实具备去重功能。
HyperLogLog 除了上面的 pfadd 和 pfcount 之外,还提供了第三个指令 pfmerge,用于将多个 pf 计数值累加在一起形成一个新的 pf 值。
比如在网站中我们有两个内容差不多的页面,运营说需要这两个页面的数据进行合并。其中页面的 UV 访问量也需要合并,那这个时候 pfmerge 就可以派上用场了。
HyperLogLog 这个数据结构不是免费的,不是说使用这个数据结构要花钱,它需要占据一定 12k 的存储空间,所以它不适合统计单个用户相关的数据。如果你的用户上亿,可以算算,这个空间成本是非常惊人的。
不过你也不必过于当心,因为 Redis 对 HyperLogLog 的存储进行了优化,在计数比较小时,它的存储空间采用稀疏矩阵存储,空间占用很小,仅仅在计数慢慢变大,稀疏矩阵占用空间渐渐超过了阈值时才会一次性转变成稠密矩阵,才会占用 12k 的空间。
在 Redis 的 HyperLogLog 实现中用到的是 16384 个桶,也就是 2^14,每个桶的 maxbits 需要 6 个 bits 来存储,最大可以表示 maxbits=63,于是总共占用内存就是 2^14 * 6 / 8 = 12k 字节。
Redis 在 3.2 版本以后增加了地理位置 GEO 模块,意味着我们可以使用 Redis 来实现摩拜单车「附近的 Mobike」、美团和饿了么「附近的餐馆」这样的功能了。
地图元素的位置数据使用二维的经纬度表示,经度范围 (-180, 180],纬度范围 (-90, 90],纬度正负以赤道为界,北正南负,经度正负以本初子午线 (英国格林尼治天文台) 为界,东正西负。比如掘金办公室在望京 SOHO,它的经纬度坐标是 (116.48105,39.996794),都是正数,因为中国位于东北半球。
当两个元素的距离不是很远时,可以直接使用勾股定理就能算得元素之间的距离。我们平时使用的「附近的人」的功能,元素距离都不是很大,勾股定理算距离足矣。不过需要注意的是,经纬度坐标的密度不一样 (经度总共 360 度,纬度总共 180 度),勾股定律计算平方差时之后再求和时,需要按一定的系数比加权求和。
现在,如果要计算「附近的人」,也就是给定一个元素的坐标,然后计算这个坐标附近的其它元素,按照距离进行排序,该如何下手?
如果现在元素的经纬度坐标使用关系数据库 (元素 id, 经度 x, 纬度 y) 存储,你该如何计算?
首先,你不可能通过遍历来计算所有的元素和目标元素的距离然后再进行排序,这个计算量太大了,性能指标肯定无法满足。一般的方法都是通过矩形区域来限定元素的数量,然后对区域内的元素进行全量距离计算再排序。这样可以明显减少计算量。如何划分矩形区域呢?可以指定一个半径 r,使用一条 SQL 就可以圈出来。当用户对筛出来的结果不满意,那就扩大半径继续筛选。
sqlselect id from positions where x0-r < x < x0+r and y0-r < y < y0+r
为了满足高性能的矩形区域算法,数据表需要在经纬度坐标加上双向复合索引 (x, y),这样可以最大优化查询性能。但是数据库查询性能毕竟有限,如果「附近的人」查询请求非常多,在高并发场合,这可能并不是一个很好的方案。
业界比较通用的地理位置距离排序算法是 GeoHash 算法,Redis 也使用 GeoHash 算法。GeoHash 算法将二维的经纬度数据映射到一维的整数,这样所有的元素都将在挂载到一条线上,距离靠近的二维坐标映射到一维后的点之间距离也会很接近。当我们想要计算「附近的人时」,首先将目标位置映射到这条线上,然后在这个一维的线上获取附近的点就行了。
那这个映射算法具体是怎样的呢?它将整个地球看成一个二维平面,然后划分成了一系列正方形的方格,就好比围棋棋盘。所有的地图元素坐标都将放置于唯一的方格中。方格越小,坐标越精确。然后对这些方格进行整数编码,越是靠近的方格编码越是接近。那如何编码呢?一个最简单的方案就是切蛋糕法。设想一个正方形的蛋糕摆在你面前,二刀下去均分分成四块小正方形,这四个小正方形可以分别标记为 00,01,10,11 四个二进制整数。然后对每一个小正方形继续用二刀法切割一下,这时每个小小正方形就可以使用 4bit 的二进制整数予以表示。然后继续切下去,正方形就会越来越小,二进制整数也会越来越长,精确度就会越来越高。
上面的例子中使用的是二刀法,真实算法中还会有很多其它刀法,最终编码出来的整数数字也都不一样。
编码之后,每个地图元素的坐标都将变成一个整数,通过这个整数可以还原出元素的坐标,整数越长,还原出来的坐标值的损失程度就越小。对于「附近的人」这个功能而言,损失的一点精确度可以忽略不计。
GeoHash 算法会继续对这个整数做一次 base32 编码 (0-9,a-z 去掉 a,i,l,o 四个字母) 变成一个字符串。在 Redis 里面,经纬度使用 52 位的整数进行编码,放进了 zset 里面,zset 的 value 是元素的 key,score 是 GeoHash 的 52 位整数值。zset 的 score 虽然是浮点数,但是对于 52 位的整数值,它可以无损存储。
在使用 Redis 进行 Geo 查询时,我们要时刻想到它的内部结构实际上只是一个zset(skiplist)。通过 zset 的 score 排序就可以得到坐标附近的其它元素 (实际情况要复杂一些,不过这样理解足够了),通过将 score 还原成坐标值就可以得到元素的原始坐标。
Redis 提供的 Geo 指令只有 6 个,读者们瞬间就可以掌握。使用时,读者务必再次想 起,它只是一个普通的 zset 结构。
geoadd 指令携带集合名称以及多个经纬度名称三元组,注意这里可以加入多个三元组
sh127.0.0.1:6379> geoadd company 116.48105 39.996794 juejin
(integer) 1
127.0.0.1:6379> geoadd company 116.514203 39.905409 ireader
(integer) 1
127.0.0.1:6379> geoadd company 116.489033 40.007669 meituan
(integer) 1
127.0.0.1:6379> geoadd company 116.562108 39.787602 jd 116.334255 40.027400 xiaomi
(integer) 2
geodist 指令可以用来计算两个元素之间的距离,携带集合名称、2 个名称和距离单位。
sh127.0.0.1:6379> geodist company juejin ireader km
"10.5501"
127.0.0.1:6379> geodist company juejin meituan km
"1.3878"
127.0.0.1:6379> geodist company juejin jd km
"24.2739"
127.0.0.1:6379> geodist company juejin xiaomi km
"12.9606"
127.0.0.1:6379> geodist company juejin juejin km
"0.0000"
我们可以看到掘金离美团最近,因为它们都在望京。距离单位可以是 m、km、ml、ft,分别代表米、千米、英里和尺。
geopos 指令可以获取集合中任意元素的经纬度坐标,可以一次获取多个。
sh127.0.0.1:6379> geopos company juejin
1) 1) "116.48104995489120483"
2) "39.99679348858259686"
127.0.0.1:6379> geopos company ireader
1) 1) "116.5142020583152771"
2) "39.90540918662494363"
127.0.0.1:6379> geopos company juejin ireader
1) 1) "116.48104995489120483"
2) "39.99679348858259686"
2) 1) "116.5142020583152771"
2) "39.90540918662494363"
我们观察到获取的经纬度坐标和 geoadd 进去的坐标有轻微的误差,原因是 geohash 对二维坐标进行的一维映射是有损的,通过映射再还原回来的值会出现较小的差别。对于「附近的人」这种功能来说,这点误差根本不是事。
geohash 可以获取元素的经纬度编码字符串,上面已经提到,它是 base32 编码。 你可以使用这个编码值去 http://geohash.org/${hash} 中进行直接定位,它是 geohash 的标准编码值。
sh127.0.0.1:6379> geohash company ireader
1) "wx4g52e1ce0"
127.0.0.1:6379> geohash company juejin
1) "wx4gd94yjn0"
georadiusbymember 指令是最为关键的指令,它可以用来查询指定元素附近的其它元素,它的参数非常复杂。
sh# 范围 20 公里以内最多 3 个元素按距离正排,它不会排除自身
127.0.0.1:6379> georadiusbymember company ireader 20 km count 3 asc
1) "ireader"
2) "juejin"
3) "meituan"
# 范围 20 公里以内最多 3 个元素按距离倒排
127.0.0.1:6379> georadiusbymember company ireader 20 km count 3 desc
1) "jd"
2) "meituan"
3) "juejin"
# 三个可选参数 withcoord withdist withhash 用来携带附加参数
# withdist 很有用,它可以用来显示距离
127.0.0.1:6379> georadiusbymember company ireader 20 km withcoord withdist withhash count 3 asc
1) 1) "ireader"
2) "0.0000"
3) (integer) 4069886008361398
4) 1) "116.5142020583152771"
2) "39.90540918662494363"
2) 1) "juejin"
2) "10.5501"
3) (integer) 4069887154388167
4) 1) "116.48104995489120483"
2) "39.99679348858259686"
3) 1) "meituan"
2) "11.5748"
3) (integer) 4069887179083478
4) 1) "116.48903220891952515"
2) "40.00766997707732031"
除了 georadiusbymember 指令根据元素查询附近的元素,Redis 还提供了根据坐标值来查询附近的元素,这个指令更加有用,它可以根据用户的定位来计算「附近的车」,「附近的餐馆」等。它的参数和 georadiusbymember 基本一致,除了将目标元素改成经纬度坐标值。
sh127.0.0.1:6379> georadius company 116.514202 39.905409 20 km withdist count 3 asc
1) 1) "ireader"
2) "0.0000"
2) 1) "juejin"
2) "10.5501"
3) 1) "meituan"
2) "11.5748"
在一个地图应用中,车的数据、餐馆的数据、人的数据可能会有百万千万条,如果使用Redis 的 Geo 数据结构,它们将全部放在一个 zset 集合中。在 Redis 的集群环境中,集合可能会从一个节点迁移到另一个节点,如果单个 key 的数据过大,会对集群的迁移工作造成较大的影响,在集群环境中单个 key 对应的数据量不宜超过 1M,否则会导致集群迁移出现卡顿现象,影响线上服务的正常运行。
所以,这里建议 Geo 的数据使用单独的 Redis 实例部署,不使用集群环境。如果数据量过亿甚至更大,就需要对 Geo 数据进行拆分,按国家拆分、按省拆分,按市拆分,在人口特大城市甚至可以按区拆分。这样就可以显著降低单个 zset 集合的大小。
提示
在回答此注意事项时,可以结合集群的数据同步,描述其影响与解决方案。
分布式应用进行逻辑处理时经常会遇到并发问题。
比如一个操作要修改用户的状态,修改状态需要先读出用户的状态,在内存里进行修改,改完了再存回去。如果这样的操作同时进行了,就会出现并发问题,因为读取和保存状态这两个操作不是原子的。(Wiki 解释:所谓原子操作是指不会被线程调度机制打断的操作;这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch 线程切换。)
这个时候就要使用到分布式锁来限制程序的并发执行。Redis 分布式锁使用非常广泛,它是面试的重要考点之一,很多同学都知道这个知识,也大致知道分布式锁的原理,但是具体到细节的使用上往往并不完全正确。
分布式锁本质上要实现的目标就是在 Redis 里面占一个“茅坑”,当别的进程也要来占时,发现已经有人蹲在那里了,就只好放弃或者稍后再试。占坑一般是使用 setnx(set if not exists) 指令,只允许被一个客户端占坑。先来先占,用完了,再调用 del 指令释放茅坑。
sh// 这里的冒号:就是一个普通的字符,没特别含义,它可以是任意其它字符,不要误解
> setnx lock:codehole true
OK
... do something critical ...
> del lock:codehole
(integer) 1
但是有个问题,如果逻辑执行到中间出现异常了,可能会导致 del 指令没有被调用,这样就会陷入死锁,锁永远得不到释放。于是我们在拿到锁之后,再给锁加上一个过期时间,比如 5s,这样即使中间出现异常也可以保证 5 秒之后锁会自动释放。
sh> setnx lock:codehole true
OK
> expire lock:codehole 5
... do something critical ...
> del lock:codehole
(integer) 1
但是以上逻辑还有问题。如果在 setnx 和 expire 之间服务器进程突然挂掉了,可能是因为机器掉电或者是被人为杀掉的,就会导致 expire 得不到执行,也会造成死锁。
这种问题的根源就在于 setnx 和 expire 是两条指令而不是原子指令。如果这两条指令可以一起执行就不会出现问题。为了解决这个疑难,Redis 开源社区涌现了一堆分布式锁的 library,专门用来解决这个问题。实现方法极为复杂,小白用户一般要费很大的精力才可以搞懂。
为了治理这个乱象,Redis 2.8 版本中作者加入了 set 指令的扩展参数,使得 setnx 和 expire 指令可以一起执行,彻底解决了分布式锁的乱象。从此以后所有的第三方分布式锁 library 可以休息了。
sh> set lock:codehole true ex 5 nx
OK ...
do something critical ...
> del
lock:codehole
上面这个指令就是 setnx 和 expire 组合在一起的原子指令,它就是分布式锁的奥义所在。
Redis 的分布式锁不能解决超时问题,如果在加锁和释放锁之间的逻辑执行的太长,以至于超出了锁的超时限制,就会出现问题。因为这时候锁过期了,第二个线程重新持有了这把锁,但是紧接着第一个线程执行完了业务逻辑,就把锁给释放了,第三个线程就会在第二个线程逻辑执行完之间拿到了锁。
有一个更加安全的方案是为 set 指令的 value 参数设置为一个随机数,释放锁时先匹配随机数是否一致,然后再删除 key。但是匹配 value 和删除 key 不是一个原子操作,Redis 也没有提供类似于 delifequals 这样的指令,这就需要使用 Lua 脚本来处理了,因为 Lua 脚本可以保证连续多个指令的原子性执行。
lua# delifequals
if redis.call("get",KEYS[1]) == ARGV[1] then
return redis.call("del",KEYS[1])
else
return 0
end
可重入性是指线程在持有锁的情况下再次请求加锁,如果一个锁支持同一个线程的多次加锁,那么这个锁就是可重入的。比如 Java 语言里有个 ReentrantLock 就是可重入锁。Redis 分布式锁如果要支持可重入,需要对客户端的 set 方法进行包装,使用线程的 Threadlocal 变量存储当前持有锁的计数。
在集群环境下,上述这种方式是有缺陷的,它不是绝对安全的。
比如在 Sentinel 集群中,主节点挂掉时,从节点会取而代之,客户端上却并没有明显感知。原先第一个客户端在主节点中申请成功了一把锁,但是这把锁还没有来得及同步到从节点,主节点突然挂掉了。然后从节点变成了主节点,这个新的节点内部没有这个锁,所以当另一个客户端过来请求加锁时,立即就批准了。这样就会导致系统中同样一把锁被两个客户端同时持有,不安全性由此产生。
为了使用 Redlock,需要提供多个 Redis 实例,这些实例之前相互独立没有主从关系。同很多分布式算法一样,redlock 也使用「大多数机制」。
加锁时,它会向过半节点发送 set(key, value, nx=True, ex=xxx) 指令,只要过半节点 set 成功,那就认为加锁成功。释放锁时,需要向所有节点发送 del 指令。不过 Redlock 算法还需要考虑出错重试、时钟漂移等很多细节问题,同时因为 Redlock 需要向多个节点进行读写,意味着相比单实例 Redis 性能会下降一些。
如果你很在乎高可用性,希望挂了一台 redis 完全不受影响,那就应该考虑 redlock。不过代价也是有的,需要更多的 redis 实例,性能也下降了,代码上还需要引入额外的library,运维上也需要特殊对待,这些都是需要考虑的成本,使用前请再三斟酌。
上一节我们学会了使用 HyperLogLog 数据结构来进行估数,它非常有价值,可以解决 很多精确度不高的统计需求。 但是如果我们想知道某一个值是不是已经在 HyperLogLog 结构里面了,它就无能为力 了,它只提供了 pfadd 和 pfcount 方法,没有提供 pfcontains 这种方法。
讲个使用场景,比如我们在使用新闻客户端看新闻时,它会给我们不停地推荐新的内 容,它每次推荐时要去重,去掉那些已经看过的内容。问题来了,新闻客户端推荐系统如何 实现推送去重的?
你会想到服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户 的历史记录里进行筛选,过滤掉那些已经存在的记录。问题是当用户量很大,每个用户看过 的新闻又很多的情况下,这种方式,推荐系统的去重工作在性能上跟的上么?
实际上,如果历史记录存储在关系数据库里,去重就需要频繁地对数据库进行 exists 查 询,当系统并发量很高时,数据库是很难扛住压力的。 你可能又想到了缓存,但是如此多的历史记录全部缓存起来,那得浪费多大存储空间 啊?而且这个存储空间是随着时间线性增长,你撑得住一个月,你能撑得住几年么?但是不 缓存的话,性能又跟不上,这该怎么办? 这时,布隆过滤器 (Bloom Filter) 闪亮登场了,它就是专门用来解决这种去重问题的。 它在起到去重的同时,在空间上还能节省 90% 以上,只是稍微有那么点不精确,也就是有 一定的误判概率。
布隆过滤器可以理解为一个不怎么精确的 set 结构,当你使用它的 contains 方法判断某 个对象是否存在时,它可能会误判。但是布隆过滤器也不是特别不精确,只要参数设置的合 理,它的精确度可以控制的相对足够精确,只会有小小的误判概率。
当布隆过滤器说某个值存在时,这个值可能不存在;当它说不存在时,那就肯定不存 在。打个比方,当它说不认识你时,肯定就不认识;当它说见过你时,可能根本就没见过 面,不过因为你的脸跟它认识的人中某脸比较相似 (某些熟脸的系数组合),所以误判以前见 过你。
套在上面的使用场景中,布隆过滤器能准确过滤掉那些已经看过的内容,那些没有看过 的新内容,它也会过滤掉极小一部分 (误判),但是绝大多数新内容它都能准确识别。这样就 可以完全保证推荐给用户的内容都是无重复的。
布隆过滤器有二个基本指令,bf.add
添加元素,bf.exists
查询元素是否存在,它的用法和 set 集合的 sadd 和 sismember 差不多。注意 bf.add 只能一次添加一个元素,如果想要一次添加多个,就需要用到 bf.madd
指令。同样如果需要一次查询多个元素是否存在,就需要用到 bf.mexists
指令。
sh127.0.0.1:6379> bf.add codehole user1
(integer) 1
127.0.0.1:6379> bf.add codehole user2
(integer) 1
127.0.0.1:6379> bf.add codehole user3
(integer) 1
127.0.0.1:6379> bf.exists codehole user1
(integer) 1
127.0.0.1:6379> bf.exists codehole user2
(integer) 1
127.0.0.1:6379> bf.exists codehole user3
(integer) 1
127.0.0.1:6379> bf.exists codehole user4
(integer) 0
127.0.0.1:6379> bf.madd codehole user4 user5 user6
1) (integer) 1
2) (integer) 1
3) (integer) 1
127.0.0.1:6379> bf.mexists codehole user4 user5 user6 user7
1) (integer) 1
2) (integer) 1
3) (integer) 1
4) (integer) 0
布隆过滤器什么时候会误判呢?
布隆过滤器对于已经见过的元素肯定不会误判,它只会误判那些没见过的元素。通俗点说,我见过的人一定认识,没见过的可能误认。
学会了布隆过滤器的使用,下面有必要把原理解释一下,不然读者还会继续蒙在鼓里。
每个布隆过滤器对应到 Redis 的数据结构里面就是一个大型的位数组和几个不一样的无偏 hash 函数。所谓无偏就是能够把元素的 hash 值算得比较均匀。
向布隆过滤器中添加 key 时,会使用多个 hash 函数对 key 进行 hash 算得一个整数索引值然后对位数组长度进行取模运算得到一个位置,每个 hash 函数都会算得一个不同的位置。再把位数组的这几个位置都置为 1 就完成了 add 操作。
向布隆过滤器询问 key 是否存在时,跟 add 一样,也会把 hash 的几个位置都算出来,看看位数组中这几个位置是否都位 1,只要有一个位为 0,那么说明布隆过滤器中这个key 不存在。如果都是 1,这并不能说明这个 key 就一定存在,只是极有可能存在,因为这些位被置为 1 可能是因为其它的 key 存在所致。如果这个位数组比较稀疏,这个概率就会很大,如果这个位数组比较拥挤,这个概率就会降低。
使用时不要让实际元素远大于初始化大小,当实际元素开始超出初始化大小时,应该对布隆过滤器进行重建,重新分配一个 size 更大的过滤器,再将所有的历史元素批量 add 进去 (这就要求我们在其它的存储器中记录所有的历史元素)。因为 error_rate 不会因为数量超出就急剧增加,这就给我们重建过滤器提供了较为宽松的时间。
在爬虫系统中,我们需要对 URL 进行去重,已经爬过的网页就可以不用爬了。但是 URL 太多了,几千万几个亿,如果用一个集合装下这些 URL 地址那是非常浪费空间的。这时候就可以考虑使用布隆过滤器。它可以大幅降低去重存储消耗,只不过也会使得爬虫系统错过少量的页面。
布隆过滤器在 NoSQL 数据库领域使用非常广泛,我们平时用到的 HBase、Cassandra 还有 LevelDB、RocksDB 内部都有布隆过滤器结构,布隆过滤器可以显著降低数据库的 IO 请求数量。当用户来查询某个 row 时,可以先通过内存中的布隆过滤器过滤掉大量不存在的 row 请求,然后再去磁盘进行查询。
邮箱系统的垃圾邮件过滤功能也普遍用到了布隆过滤器,因为用了这个过滤器,所以平时也会遇到某些正常的邮件被放进了垃圾邮件目录中,这个就是误判所致,概率很低。
首先我们来看一个常见 的简单的限流策略。系统要限定用户的某个行为在指定的时间里只能允许发生 N 次,如何使用 Redis 的数据结构来实现这个限流的功能?
我们先定义这个接口,理解了这个接口的定义,读者就应该能明白我们期望达到的功能。
sh# 指定用户 user_id 的某个行为 action_key 在特定的时间内 period 只允许发生一定的次数
max_count
def is_action_allowed(user_id, action_key, period, max_count):
return True
# 调用这个接口 , 一分钟内只允许最多回复 5 个帖子
can_reply = is_action_allowed("laoqian", "reply", 60, 5)
if can_reply:
do_reply()
else:
raise ActionThresholdOverflow()
先不要继续往后看,想想如果让你来实现,你该怎么做?
这个限流需求中存在一个滑动时间窗口,想想 zset 数据结构的 score 值,是不是可以通过 score 来圈出这个时间窗口来。而且我们只需要保留这个时间窗口,窗口之外的数据都可以砍掉。那这个 zset 的 value 填什么比较合适呢?它只需要保证唯一性即可,用 uuid 会比较浪费空间,那就改用毫秒时间戳吧。
如图所示,用一个 zset 结构记录用户的行为历史,每一个行为都会作为 zset 中的一个key 保存下来。同一个用户同一种行为用一个 zset 记录。
为节省内存,我们只需要保留时间窗口内的行为记录,同时如果用户是冷用户,滑动时间窗口内的行为是空记录,那么这个 zset 就可以从内存中移除,不再占用空间。
通过统计滑动窗口内的行为数量与阈值 max_count 进行比较就可以得出当前的行为是否允许。用代码表示如下:
javapublic class SimpleRateLimiter {
private Jedis jedis;
public SimpleRateLimiter(Jedis jedis) {
this.jedis = jedis;
}
public boolean isActionAllowed(String userId, String actionKey, int period, int maxCount) {
String key = String.format("hist:%s:%s", userId, actionKey);
long nowTs = System.currentTimeMillis();
Pipeline pipe = jedis.pipelined();
pipe.multi();
pipe.zadd(key, nowTs, "" + nowTs);
pipe.zremrangeByScore(key, 0, nowTs - period * 1000);
Response<Long> count = pipe.zcard(key);
pipe.expire(key, period + 1);
pipe.exec();
pipe.close();
return count.get() <= maxCount;
}
public static void main(String[] args) {
Jedis jedis = new Jedis();
SimpleRateLimiter limiter = new SimpleRateLimiter(jedis);
for(int i=0;i<20;i++) {
System.out.println(limiter.isActionAllowed("laoqian", "reply", 60, 5));
}
}
}
这段代码还是略显复杂,需要读者花一定的时间好好啃。它的整体思路就是:每一个行为到来时,都维护一次时间窗口。将时间窗口外的记录全部清理掉,只保留窗口内的记录。zset 集合中只有 score 值非常重要,value 值没有特别的意义,只需要保证它是唯一的就可以了。
因为这几个连续的 Redis 操作都是针对同一个 key 的,使用 pipeline 可以显著提升 Redis 存取效率。但这种方案也有缺点,因为它要记录时间窗口内所有的行为记录,如果这个量很大,比如限定 60s 内操作不得超过 100w 次这样的参数,它是不适合做这样的限流的,因为会消耗大量的存储空间。
漏斗限流是最常用的限流方法之一,顾名思义,这个算法的灵感源于漏斗(funnel)的结构。
漏洞的容量是有限的,如果将漏嘴堵住,然后一直往里面灌水,它就会变满,直至再也装不进去。如果将漏嘴放开,水就会往下流,流走一部分之后,就又可以继续往里面灌水。如果漏嘴流水的速率大于灌水的速率,那么漏斗永远都装不满。如果漏嘴流水速率小于灌水的速率,那么一旦漏斗满了,灌水就需要暂停并等待漏斗腾空。
所以,漏斗的剩余空间就代表着当前行为可以持续进行的数量,漏嘴的流水速率代表着系统允许该行为的最大频率。下面我们使用代码来描述单机漏斗算法。
javapublic class FunnelRateLimiter {
static class Funnel {
int capacity;
float leakingRate;
int leftQuota;
long leakingTs;
public Funnel(int capacity, float leakingRate) {
this.capacity = capacity;
this.leakingRate = leakingRate;
this.leftQuota = capacity;
this.leakingTs = System.currentTimeMillis();
}
void makeSpace() {
long nowTs = System.currentTimeMillis();
long deltaTs = nowTs - leakingTs;
int deltaQuota = (int) (deltaTs * leakingRate);
if (deltaQuota < 0) { // 间隔时间太长,整数数字过大溢出
this.leftQuota = capacity;
this.leakingTs = nowTs;
return;
}
if (deltaQuota < 1) { // 腾出空间太小,最小单位是 1
return;
}
this.leftQuota += deltaQuota;
this.leakingTs = nowTs;
if (this.leftQuota > this.capacity) {
this.leftQuota = this.capacity;
}
}
boolean watering(int quota) {
makeSpace();
if (this.leftQuota >= quota) {
this.leftQuota -= quota;
return true;
}
return false;
}
}
private Map<String, Funnel> funnels = new HashMap<>();
public boolean isActionAllowed(String userId, String actionKey, int capacity, float leakingRate) {
String key = String.format("%s:%s", userId, actionKey);
Funnel funnel = funnels.get(key);
if (funnel == null) {
funnel = new Funnel(capacity, leakingRate);
funnels.put(key, funnel);
}
return funnel.watering(1); // 需要 1 个 quota
}
}
Funnel 对象的 make_space 方法是漏斗算法的核心,其在每次灌水前都会被调用以触发漏水,给漏斗腾出空间来。能腾出多少空间取决于过去了多久以及流水的速率。Funnel 对象占据的空间大小不再和行为的频率成正比,它的空间占用是一个常量。
问题来了,分布式的漏斗算法该如何实现?能不能使用 Redis 的基础数据结构来搞定?我们观察 Funnel 对象的几个字段,我们发现可以将 Funnel 对象的内容按字段存储到一个 hash 结构中,灌水的时候将 hash 结构的字段取出来进行逻辑运算后,再将新值回填到hash 结构中就完成了一次行为频度的检测。
但是有个问题,我们无法保证整个过程的原子性。从 hash 结构中取值,然后在内存里运算,再回填到 hash 结构,这三个过程无法原子化,意味着需要进行适当的加锁控制。而一旦加锁,就意味着会有加锁失败,加锁失败就需要选择重试或者放弃。
我们可以使用lua脚本来保证原子性。
在平时线上 Redis 维护工作中,有时候需要从 Redis 实例成千上万的 key 中找出特定前缀的 key 列表来手动处理数据,可能是修改它的值,也可能是删除 key。这里就有一问题,如何从海量的 key 中找出满足特定前缀的 key 列表来?
Redis 提供了一个简单暴力的指令 keys 用来列出所有满足特定正则字符串规则的 key。
sh127.0.0.1:6379> set codehole1 a
OK
127.0.0.1:6379> set codehole2 b
OK
127.0.0.1:6379> set codehole3 c
OK
127.0.0.1:6379> set code1hole a
OK
127.0.0.1:6379> set code2hole b
OK
127.0.0.1:6379> set code3hole b
OK
127.0.0.1:6379> keys *
1) "codehole1"
2) "code3hole"
3) "codehole3"
4) "code2hole"
5) "codehole2"
6) "code1hole"
127.0.0.1:6379> keys codehole*
1) "codehole1"
2) "codehole3"
3) "codehole2"
127.0.0.1:6379> keys code*hole
1) "code3hole"
2) "code2hole"
3) "code1hole"
这个指令使用非常简单,提供一个简单的正则字符串即可,但是有很明显的两个缺点。
1、没有 offset、limit 参数,一次性吐出所有满足条件的 key,万一实例中有几百 w 个key 满足条件,当你看到满屏的字符串刷的没有尽头时,你就知道难受了。
2、keys 算法是遍历算法,复杂度是 O(n),如果实例中有千万级以上的 key,这个指令就会导致 Redis 服务卡顿,所有读写 Redis 的其它的指令都会被延后甚至会超时报错,因为Redis 是单线程程序,顺序执行所有指令,其它指令必须等到当前的 keys 指令执行完了才可以继续。面对这两个显著的缺点该怎么办呢?
Redis 为了解决这个问题,它在 2.8 版本中加入了大海捞针的指令——scan。
scan 相比keys 具备有以下特点:
scan 参数提供了三个参数,第一个是 cursor 整数值,第二个是 key 的正则模式,第三个是遍历的 limit hint。第一次遍历时,cursor 值为 0,然后将返回结果中第一个整数值作为下一次遍历的 cursor。一直遍历到返回的cursor 值为 0 时结束。
sh127.0.0.1:6379> scan 0 match key99* count 1000
1) "13976"
2) 1) "key9911"
2) "key9974"
3) "key9994"
4) "key9910"
5) "key9907"
6) "key9989"
7) "key9971"
8) "key99"
9) "key9966"
10) "key992"
11) "key9903"
12) "key9905"
127.0.0.1:6379> scan 13976 match key99* count 1000
1) "1996"
2) 1) "key9982"
2) "key9997"
3) "key9963"
4) "key996"
5) "key9912"
6) "key9999"
7) "key9921"
8) "key994"
9) "key9956"
10) "key9919"
127.0.0.1:6379> scan 1996 match key99* count 1000
1) "12594"
2) 1) "key9939"
2) "key9941"
3) "key9967"
4) "key9938"
5) "key9906"
6) "key999"
7) "key9909"
8) "key9933"
9) "key9992"
从上面的过程可以看到虽然提供的 limit 是 1000,但是返回的结果只有 10 个左右。因为这个 limit 不是限定返回结果的数量,而是限定服务器单次遍历的字典槽位数量(约等于)。如果将 limit 设置为 10,你会发现返回结果是空的,但是游标值不为零,意味着遍历还没结束。
sh127.0.0.1:6379> scan 0 match key99* count 10
1) "3072"
2) (empty list or set)
scan 指令是一系列指令,除了可以遍历所有的 key 之外,还可以对指定的容器集合进行遍历。比如 zscan 遍历 zset 集合元素,hscan 遍历 hash 字典的元素、sscan 遍历 set 集合的元素。
它们的原理同 scan 都会类似的,因为 hash 底层就是字典,set 也是一个特殊的hash(所有的 value 指向同一个元素),zset 内部也使用了字典来存储所有的元素内容,所以这里不再赘述。
有时候会因为业务人员使用不当,在 Redis 实例中会形成很大的对象,比如一个很大的hash,一个很大的 zset 这都是经常出现的。这样的对象对 Redis 的集群数据迁移带来了很大的问题,因为在集群环境下,如果某个 key 太大,会数据导致迁移卡顿。另外在内存分配上,如果一个 key 太大,那么当它需要扩容时,会一次性申请更大的一块内存,这也会导致卡顿。如果这个大 key 被删除,内存会一次性回收,卡顿现象会再一次产生。
在平时的业务开发中,要尽量避免大 key 的产生。
如果你观察到 Redis 的内存大起大落,这极有可能是因为大 key 导致的,这时候你就需要定位出具体是那个 key,进一步定位出具体的业务来源,然后再改进相关业务代码设计。
那如何定位大 key 呢?
为了避免对线上 Redis 带来卡顿,这就要用到 scan 指令,对于扫描出来的每一个key,使用 type 指令获得 key 的类型,然后使用相应数据结构的 size 或者 len 方法来得到它的大小,对于每一种类型,保留大小的前 N 名作为扫描结果展示出来。
sh# 扫描
scan 0 match key99* count 10
# 查看内存占用
MEMORY USAGE key9941
MEMORY USAGE 命令返回的内存大小是以字节为单位的。为了将其转换为MB,你需要将字节数除以1024 * 1024(因为1MB = 1024KB,1KB = 1024字节)。在shell脚本中,你可以使用以下命令:
shmemory_in_bytes=$(redis-cli MEMORY USAGE mykey)
memory_in_mb=$(echo "scale=2; $memory_in_bytes / (1024 * 1024)" | bc)
echo "Memory usage of 'mykey': $memory_in_mb MB"
上面这样的过程需要编写脚本,比较繁琐,不过 Redis 官方已经在 redis-cli 指令中提供了这样的扫描功能,我们可以直接拿来即用。
shredis-cli -h 127.0.0.1 -p 7001 –-bigkeys
如果你担心这个指令会大幅抬升 Redis 的 ops 导致线上报警,还可以增加一个休眠参数。
shredis-cli -h 127.0.0.1 -p 7001 –-bigkeys -i 0.1
上面这个指令每隔 100 条 scan 指令就会休眠 0.1s,ops 就不会剧烈抬升,但是扫描的时间会变长。
本文作者:柳始恭
本文链接:
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!